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ABSTRACT

The first synthesis of a nitrogen-containing cycloparaphenylene, cyclo[14]paraphenylene[4]2,5-pyridylidene ([14,4]CPPy), has been achieved.
A palladium-catalyzed stepwise assembly of 2,20-bipyridine, benzene, and L-shaped cyclohexane units, followed by NaHSO4/o-chloranil-mediated
aromatization, successfully provided [14,4]CPPy. While the absorption and fluorescence properties of [14,4]CPPy were somewhat similar to those
of cycloparaphenylenes (λabs = 344 nm, ε = 7.3� 104 cm�1 M�1, λem = 427 nm,ΦF = 0.80), it was found that [14,4]CPPy possesses an interesting
halochromic property.

Cycloparaphenylene (CPP) is a simple conjugated
carbon nanoring consisting solely of benzene rings with
para linkage (Figure 1). Although CPP has attracted the
interest of chemists for a long time,1�3 the chemical synth-
esis of CPP has become feasible only recently.4�7 More-
over [12]CPP, prepared by the procedure developed in our
group, has become commercially available.8 Adding to
its structural simplicity and beauty, CPP has a number of

interesting properties such as unique cyclic conjugation,3

photophysical properties,4,5e,6,7 and guest-encapsulating
properties.5c,d,9 Moreover, as CPP represents the shortest
sidewall segment of armchair carbon nanotube (CNT)
structures, there is great expectation that CPP might
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function as a precursor or seed in the preparation of
structurally uniform armchair CNT.1

In relation to these studies, other carbon nanorings have
recently been synthesized (Figure 1).10�12 For example, we
have designed acene-inserted CPPs as short sidewall seg-
ments of chiral CNT structures and synthesized one of the
chiral carbon nanorings, [13]cycloparaphenylene-2,6-
naphthylene ([13]CPPN).10,11 More recently, we accom-
plished the first synthesis of aπ-extended carbon nanoring,
[9]cyclo-1,4-naphthylene ([9]CN), and uncovered a num-
ber of unique structural features such as large dihedral
angles, slow arene rotation, chirality, and a racemization
process.12 In addition to these hydrocarbon-based materi-
als, carbon nanorings that bear heteroatoms are of sig-
nificant interest for numerous potential applications.3hWe
herein report the synthesis and some interesting properties
of cyclo[14]paraphenylene[4]2,5-pyridylidene ([14,4]CPPy),
a nitrogen-containing CPP.
We decided to apply our general synthetic strategy using

a benzene-convertible L-shaped cyclohexane unit to the
synthesis of CPPy. Among various routes and conditions

for making carbon nanorings,5,10,12 we envisioned that the
stepwise Pd-catalyzed cross-coupling method useful in mak-
ing relatively largeCPPswouldbe suitable (Scheme1).5b In
our previous synthesis of [14]�[16]CPP, the 2:1 cross-
coupling of a cis-1,4-bis(4-bromophenyl)cyclohexane unit
(1) and 1,4-diborylbenzene or 4,40-diborylbiphenyl deriva-
tive (linear unit) furnished the corresponding U-shaped
dibromide. The counterpart U-shaped diboronates were
synthesized from thedibromides byaPd-catalyzedMiyaura
borylation reaction. The cyclizative dimerization of these
U-shaped units and follow-up aromatization led to [14]CPP
(7 þ 7), [15]CPP (7 þ 8), and [16]CPP (8 þ 8).

We envisaged that [14,4]CPPy, a bipyridine-inserted
CPP, would be synthesized by a 2:2 cross-coupling of a
U-shaped 7-benzene unit and 5,50-dibromo-2,20-bipyridyl
(2) in a stepwise fashion (2þ 7þ 2 then 11þ 7) followedby
aromatization (Scheme 1). The outcome of our investiga-
tions based on this strategy is the first synthesis of [14,4]CPPy
shown in Scheme 2.
The key 7-benzene U-shaped diboronate 3 was synthe-

sized in four steps from commercially available reagents
following our previously established method.5b The treat-
ment of 3 (1.0 equiv) with an excess amount of 2 (10 equiv)
in the presence of PdCl2(dppf) (3 mol %) and n-Bu4NBr
(1.0 equiv) in toluene/H2O afforded bipyridine-containing
U-shaped unit 4 in 79% yield (Scheme 2). Then 4 was
subjected to the cyclizative cross-coupling with 3 catalyzed
by the PdCl2(dppf)/n-Bu4NBr system to furnish the box-
shaped macrocycle 5 in 48% yield. Good yield in the
macrocyclization may be a consequence of the nice match

Scheme 1. Synthetic Strategy for [14,4]CPPy

Figure 1. Structures of CPP and related carbon nanorings.
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between the “archwidths”of twoU-shapedunits (3 and 4).
The conditions based on the Pd(OAc)2/XPhos system,
which we optimized and used in the modular synthesis
of [n]CPPs,5b were not effective in this case. Finally, the
macrocycle 5 was subjected to aromatization with NaH-
SO4 (20 equiv) and o-chloranil (5.0 equiv) in DMSO/
m-xylene at 150 �C to afford [14,4]CPPy as a light tan
solid in 56% yield (Scheme 2). In the 1H NMR spectrum
of [14,4]CPPy, three typical signals of pyridyl hydrogen
atoms were observed: δ= 8.05 (dd, J= 8.4, 1.6 Hz, 4H),
8.45 (d, J= 8.4 Hz, 4H), 8.97 (d, J= 1.6 Hz, 4H) ppm in

CDCl3. The ring size of [14,4]CPPy (ca. 25 Å) is almost
identical to that of [18]CPP, which is the largest CPP
synthesized to date.4

With the target nanoring in hand, we subsequently
investigated the UV�vis absorption and fluorescence
properties of [14,4]CPPy to elucidate the effect of pyridine
rings on the electronic nature of CPP. Shown in Figure 2a
are these spectra of [14,4]CPPy takenas a dichloromethane
solution. Themost intense absorptionmaximum (λabs) was
observed at 344 nm with the molecular absorption coeffi-
cient (ε) of 7.3� 104 cm�1M�1. Interestingly, the shape of
the absorption spectrum of [14,4]CPPy turned out to be
very similar to those of large CPPs.5e

Similar to [18]CPP, [14,4]CPPy showed intense blue
photoluminescence with the emission maxima (λem) at
427 nm. The absolute fluorescence quantum yield (ΦF),
determined by a calibrated integrating sphere system, was
found to be quite high (ΦF = 0.80).13 According to the
quantum yield and fluorescence lifetime (τs = 1.2 ns),
radiative and nonradiative decay rate constants (kr =
6.8� 108 s�1, knr = 1.7� 108 s�1) were determined based
on the following equations: ΦF = kr � τs and kr þ knr =
τs
�1. These values are comparable to those of [12]CPP

(kr = 4.0 � 108 s�1, knr = 5.0 � 107 s�1).5e

Todetermine thenatureof excitationof [14,4]CPPy, aTD-
DFT study was performed at the B3LYP/6-31G(d) level.
Shown in Figure 3 are the energy diagrams and pictorial
representations of six frontierMOs of [14,4]CPPy. Unlike in
the case of CPP, the orbital energies of [14,4]CPPy are not
degenerate because of lower symmetry. However, the shapes
and energy levels of frontier MOs of [14,4]CPPy are very
similar to those of [18]CPP. This is reflective of the fact that
the contribution of lone pairs on nitrogen atoms to HOMO,
HOMO�1, andHOMO�2 becomenegligible in [14,4]CPPy
due to the effective π-conjugation.14 Similarly to the case of
CPP, the oscillator strength (f) of the HOMOfLUMO
transition (S1) is virtually not allowed. The observed intense

Scheme 2. Synthesis of [14,4]CPPya,b

aReaction conditions: (a) PdCl2(dppf), Na2CO3, n-Bu4NBr, toluene/
H2O, reflux. (b) PdCl2(dppf), Na2CO3, n-Bu4NBr, toluene/H2O, reflux.
(c) NaHSO4 3H2O, o-chloranil, m-xylene/DMSO, 150 �C. bMOM =
methoxymethyl, B(pin) = 4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl,
dppf=1,10-bis(diphenylphosphino)ferrocene,DMSO=dimethylsulfoxide.

Figure 2. (a) UV�vis absorption (solid lines) and fluorescence
spectra (broken lines) of dichloromethane solution of [14,4]CPPy
(blue lines) andafter addingHCl (green lines). (b) Fluorescence of
[14,4]CPPy. (c) Fluorescence of [14,4]CPPy þ HCl.

(13) The ΦF values of [12]- and [14]�[16]CPP are in a range of
0.88�0.90. See ref 5e.
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absorption should be the excitations of the ground state to
the second and third excited states S2 (HOMO�1fLUMO,
HOMOfLUMOþ2) and S3 (HOMO�2fLUMO,
HOMOfLUMOþ1) with high f values (3.15 and 2.16).

While the absorption and fluorescence properties of
CPPy were somewhat similar to those of CPP, the intro-
duction of nitrogen atoms may append additional proper-
ties. Those include acid�base chemistry as well as a metal-
binding property. We herein report some preliminary
results on this topic. We found that the addition of hydro-
chloric acid to a diluted solution of [14,4]CPPy in dichlor-
omethane changes the optical properties (fluorescence in
particular) of [14,4]CPPy. The absorption and fluorescence
spectra of [14,4]CPPy with HCl are shown in Figure 2a as
green lines. An obvious broadening and a red shift were
observed in both absorption and fluorescence. These bath-
ochromic shifts might be due to the emergence of an

intramolecular charge transfer excited state upon the pro-
tonation of bipyridine units in [14,4]CPPy. By adding HCl,
otherwise blue emissive [14,4]CPPy displayed greenish
yellow fluorescence. Interestingly, neutralization of the
solution with Et3N reproduced the blue fluorescence of
[14,4]CPPy. This acid/base-induced reversible fluorescence
change (halochromism) is a novel function added to CPP.
By preliminary experiments, we also observed the feasibility
of metal complexation of [14,4]CPPy with Pd(II).15 We
greatly expect that CPPy would function as a key compo-
nent for a new class of supramolecular nanotubes and belts
by taking advantage of its metal-coordinating ability.16

In summary, the first synthesis of a nitrogen-containing
CPP has been achieved. A palladium-catalyzed stepwise
assembly of 2,20-bipyridine, benzene, and L-shaped cyclo-
hexane units, followed by NaHSO4/o-chloranil-mediated
aromatization successfully provided [14,4]CPPy.While the
absorption and fluorescence properties of [14,4]CPPywere
somewhat similar to those of CPP (λabs = 344 nm, ε =
7.3 � 104 cm�1 M�1, λem = 427 nm, ΦF = 0.80), it was
found that [14,4]CPPy possesses an interesting halochro-
mic property. The applications of [14,4]CPPy for various
purposes and the synthesis of other heteroatom-containing
carbon nanorings are the focus of ongoing work.
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Figure 3. Energy diagrams and pictorial representations of the
frontier MOs of [14,4]CPPy, calculated at the B3LYP/6-31G(d)
level of theory. Excitation energies were computed by TD-DFT
at the same level. Values in parentheses represent oscillator
strengths (f).
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